By Topic

Convergence of gradient projection routing methods in an asynchronous stochastic quasi-static virtual circuit network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tsai, W.K. ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA

The convergence of the gradient projection algorithms for optimal routing in virtual circuit data networks proposed by D.P. Bertsekas (1982) is studied. The routing model explicitly takes into account stochastic generation and termination of virtual circuits, distributed asynchronous routing updates, inaccurate flow measurement, and delays in forwarding control packets. The problem of assigning paths for incoming sessions (or virtual circuits) to implement the gradient projection algorithms is also studied. A metering rule based on deficiency in a desired number of virtual circuits is proposed and analyzed. It is shown that the proposed metering rule is better than a randomized rule in some sense. The gradient projection routing algorithms implemented either by the metering rule or the randomized rule are shown to converge to a neighborhood of a long-term optimal routing

Published in:

Automatic Control, IEEE Transactions on  (Volume:34 ,  Issue: 1 )