By Topic

Choosing good distance metrics and local planners for probabilistic roadmap methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Amato, N.M. ; Dept. of Comput. Sci., Texas A&M Univ., College Station, TX, USA ; Bayazit, O.B. ; Dale, L.K. ; Jones, C.
more authors

This paper presents a comparative evaluation of different distance metrics and local planners within the context of probabilistic roadmap methods for planning the motion of rigid objects in three-dimensional workspaces. The study concentrates on cluttered three-dimensional workspaces typical of, for example, virtual prototyping applications such as maintainability studies in mechanical CAD designs. Our results include recommendations for selecting appropriate combinations of distance metrics and local planners for such applications. Our study of distance metrics shows that the importance of the translational distance increases relative to the rotational distance as the environment becomes more crowded. We find that each local planner makes some connections that none of the others does-indicating that better connected roadmaps will be constructed using multiple local planners. We propose a new local planning method we call rotate-at-s that often outperforms the common straight-line in C-space method in crowded environments

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:16 ,  Issue: 4 )