By Topic

Deadlock avoidance in flexible manufacturing systems using finite automata

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yalcin, A. ; Dept. of Ind. Eng., Rutgers Univ., Piscataway, NJ

A distinguishing feature of a flexible manufacturing system (FMS) is the ability to perform multiple tasks in one machine or workstation (alternative machining) and the ability to process parts according to more than one sequence of operations (alternative sequencing). In this paper, we address the issue of deadlock avoidance in systems having these characteristics. A deadlock-free and maximally permissive control policy that incorporates this flexibility is developed based on finite automata models of part process plans and the FMS. The resulting supervisory controller is used for dynamic evaluation of deadlock avoidance based on the remaining processing requirements of the parts

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:16 ,  Issue: 4 )