By Topic

Performance of RAKE reception in dense multipath channels: implications of spreading bandwidth and selection diversity order

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Win, M.Z. ; Wireless Syst. Res. Dept., AT&T Labs.-Res., Red Bank, NJ, USA ; Chrisikos, G. ; Sollenberger, N.R.

We develop an analytical framework to quantify the effects of the spreading bandwidth (BW) on spread spectrum systems operating in dense multipath environments in terms of the receiver performance, the receiver complexity, and the multipath channel parameters. The focus of the paper is to characterize the symbol error probability (SEP) performance of a RAKE receiver tracking the L strongest multipath components in wide-sense stationary uncorrelated scattering (WSSUS) Gaussian channels with frequency-selective fading. Analytical SEP expressions of the RAKE receiver are derived in terms of the number of combined paths, the spreading BW and the multipath spread of the channel. The proposed problem is made analytically tractable by transforming the physical RAKE paths, which are correlated and ordered, into the domain of a "virtual RAKE" receiver with independent virtual paths. This results in a simple derivation of the SEP for a given spreading BW and an arbitrary number of combined paths.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:18 ,  Issue: 8 )