Cart (Loading....) | Create Account
Close category search window
 

Experiments on coherent adaptive antenna array diversity for wideband DS-CDMA mobile radio

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tanaka, S. ; Wireless Labs., NTT Mobile Commun. Network Inc., Kanagawa, Japan ; Harada, A. ; Sawahashi, M. ; Adachi, F.

In wideband direct sequence code division multiple access (W-CDMA), employing an adaptive antenna array is a very promising technique to reduce severe multiple access interference (MAI) from high rate users. A four-antenna pilot symbol-assisted coherent adaptive antenna array diversity (PSA-CAAAD) receiver comprising an adaptive antenna array based on a minimum mean squared error (MMSE) criterion and a RAKE combiner is implemented in preliminary laboratory and field experiments. There are two important design concepts of the PSA-CAAAD receiver. The first is that the adaptive antenna array forms an antenna beam for each resolved propagation path and tracks only slow changes in the directions of arrival (DOAs) and average powers of the desired and interfering user signals. The second is that the RAKE combiner tracks the instantaneous changes in channel conditions and coherently combines the signals of the desired user propagating along the resolved paths to maximize the instantaneous signal-to-interference plus background noise power ratio (SINR). This paper presents, both by laboratory and field experiments, the effectiveness of PSA-CAAAD receiver as a powerful means to reduce severe MAI from high rate users, and that it is more effective than using a space diversity receiver with the same number of antennas in the W-CDMA reverse link.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:18 ,  Issue: 8 )

Date of Publication:

Aug. 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.