By Topic

An intelligent pressure sensor using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, we propose a scheme of an intelligent capacitive pressure sensor (CPS) using an artificial neural network (ANN). A switched-capacitor circuit (SCC) converts the change in capacitance of the pressure-sensor into an equivalent voltage. The effect of change in environmental conditions on the CPS and subsequently upon the output of the SCC is nonlinear in nature. Especially, change in ambient temperature causes response characteristics of the CPS to become highly nonlinear, and complex signal processing may be required to obtain correct readout. The proposed ANN-based scheme incorporates intelligence into the sensor. It is revealed from the simulation studies that this CPS model can provide correct pressure readout within ±1% error (full scale) over a range of temperature variations from -20°C to 70°C. Two ANN schemes, direct modeling and inverse modeling of a CPS, are reported. The former modeling technique enables an estimate of the nonlinear sensor characteristics, whereas the latter technique estimates the applied pressure which is used for direct digital readout. When there is a change in ambient temperature, the ANN automatically compensates for this change based on the distributive information stored in its weights

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:49 ,  Issue: 4 )