By Topic

Toward achieving energy efficiency in presence of deep submicron noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hegde, R. ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; Shanbhag, N.R.

Presented in this paper are: 1) information-theoretic lower bounds on energy consumption of noisy digital gates and 2) the concept of noise tolerance via coding for achieving energy efficiency in the presence of noise. In particular, lower bounds on a) circuit speed f/sub c/ and supply voltage V/sub dd/; b) transition activity t in presence of noise; c) dynamic energy dissipation; and d) total (dynamic and static) energy dissipation are derived. A surprising result is that in a scenario where dynamic component of power dissipation dominates, the supply voltage for minimum energy operation (V/sub dd, opt/) is greater than the minimum supply voltage (V/sub dd, min/)for reliable operation. We then propose noise tolerance via coding to approach the lower bounds on energy dissipation. We show that the lower bounds on energy for an off-chip I/O signaling example are a factor of 24/spl times/ below present day systems. A very simple Hamming code can reduce the energy consumption by a factor of 3/spl times/, while Reed-Muller (RM) codes give a 4/spl times/ reduction in energy dissipation.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:8 ,  Issue: 4 )