By Topic

Control issues to improve visual control of motion: applications in active tracking of moving targets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Barreto, J.P. ; Dept. of Electr. Eng., Coimbra Univ., Portugal ; Batista, J. ; Araujo, H. ; Almeida, A.T.

This paper deals with active tracking of 3D moving targets. Tracking is based on different visual behaviors, namely smooth pursuit and vergence control. The performance and robustness in visual control of motion depends both on the vision algorithms and the control structure. In this work we evaluate these two aspects, characterize the delays, and discuss ways to cope with latency while improving system performance. Kalman filtering is used to achieve smooth behaviors and increase visual processing robustness. A specific Kalman filter structure is proposed and its tuning and initialization are discussed. Delays and system latencies substantially affect the performance of visually guided systems. Interpolation is used to cope with visual processing delays. Model predictive control strategies are proposed to compensate for the mechanical latency in visual control of motion.

Published in:

Advanced Motion Control, 2000. Proceedings. 6th International Workshop on

Date of Conference:

1-1 April 2000