By Topic

Context-based multiscale classification of document images using wavelet coefficient distributions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jia Li ; Xerox Palo Alto Res. Center, CA, USA ; R. M. Gray

In this paper, an algorithm is developed for segmenting document images into four classes: background, photograph, text, and graph. Features used for classification are based on the distribution patterns of wavelet coefficients in high frequency bands. Two important attributes of the algorithm are its multiscale nature-it classifies an image at different resolutions adaptively, enabling accurate classification at class boundaries as well as fast classification overall-and its use of accumulated context information for improving classification accuracy

Published in:

IEEE Transactions on Image Processing  (Volume:9 ,  Issue: 9 )