By Topic

Higher-order (nonlinear) diffraction tomography: reconstruction algorithms and computer simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsihrintzis, G.A. ; Dept. of Inf., Piraeus Univ., Greece ; Devaney, A.J.

The usual propagation transform of diffraction tomography is generalized into higher-order (nonlinear) propagation transforms via use of the Born series as the data-generating model in scattering experiments. Nonlinear tomographic reconstruction algorithms are developed for inversion of scattered field data modeled up to an arbitrarily large (possibly infinite) number of terms in the Born series. A computer simulation study is included to illustrate the performance of the algorithms for the case of scattering objects with cylindrical symmetry

Published in:

Image Processing, IEEE Transactions on  (Volume:9 ,  Issue: 9 )