By Topic

Efficient VLSI architectures for baseband signal processing in wireless base-station receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rajagopal, S. ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA ; Bhashyam, S. ; Cavallaro, J.R. ; Aazhang, B.

A real-time VLSI architecture is designed for multiuser channel estimation, one of the core baseband processing operations in wireless base-station receivers. Future wireless base-station receivers will need to use sophisticated algorithms to support extremely high data rates and multimedia. Current DSP architectures are unable to fully exploit the parallelism and bit level arithmetic present in these algorithms. These features can be revealed and efficiently implemented by task partitioning the algorithms for a VLSI solution. We modify the channel estimation algorithm for a reduced complexity fixed-point hardware implementation. We show the complexity and hardware required for three different area-time tradeoffs: an area-constrained, a time-constrained and an area-time efficient architecture. The area-constrained architecture achieves low data rates with minimum hardware, which may be used in pico-cell base-stations. The time-constrained solution exploits the entire available parallelism and determines the maximum theoretical data rates. The area-time efficient architecture meets real-time requirements with minimum area overhead. The orders-of-magnitude difference between area and time constrained solutions reveals significant inherent parallelism in the algorithm. All proposed VLSI solutions exhibit better time performance than a previous DSP implementation

Published in:

Application-Specific Systems, Architectures, and Processors, 2000. Proceedings. IEEE International Conference on

Date of Conference:

2000