By Topic

Bayesian graph edit distance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Myers ; Praxis Critical Syst. Ltd., Bath, UK ; R. C. Wison ; E. R. Hancock

This paper describes a novel framework for comparing and matching corrupted relational graphs. The paper develops the idea of edit-distance originally introduced for graph-matching by Sanfeliu and Fu (1983). We show how the Levenshtein distance (1966) can be used to model the probability distribution for structural errors in the graph-matching problem. This probability distribution is used to locate matches using MAP label updates. We compare the resulting graph-matching algorithm with that recently reported by Wilson and Hancock. The use of edit-distance offers an elegant alternative to the exhaustive compilation of label dictionaries. Moreover, the method is polynomial rather than exponential in its worst-case complexity. We support our approach with an experimental study on synthetic data and illustrate its effectiveness on an uncalibrated stereo correspondence problem. This demonstrates experimentally that the gain in efficiency is not at the expense of quality of match

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:22 ,  Issue: 6 )