By Topic

Fast and globally convergent pose estimation from video images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lu, C.-P. ; IBEAM Broadcasting Corp., Sunnyvale, CA, USA ; Hager, G.D. ; Mjolsness, E.

Determining the rigid transformation relating 2D images to known 3D geometry is a classical problem in photogrammetry and computer vision. Heretofore, the best methods for solving the problem have relied on iterative optimization methods which cannot be proven to converge and/or which do not effectively account for the orthonormal structure of rotation matrices. We show that the pose estimation problem can be formulated as that of minimizing an error metric based on collinearity in object (as opposed to image) space. Using object space collinearity error, we derive an iterative algorithm which directly computes orthogonal rotation matrices and which is globally convergent. Experimentally, we show that the method is computationally efficient, that it is no less accurate than the best currently employed optimization methods, and that it outperforms all tested methods in robustness to outliers

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:22 ,  Issue: 6 )