By Topic

Classification with nonmetric distances: image retrieval and class representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. W. Jacobs ; NEC Res. Inst., Princeton, NJ, USA ; D. Weinshall ; Y. Gdalyahu

A key problem in appearance-based vision is understanding how to use a set of labeled images to classify new images. Systems that model human performance, or that use robust image matching methods, often use nonmetric similarity judgments; but when the triangle inequality is not obeyed, most pattern recognition techniques are not applicable. Exemplar-based (nearest-neighbor) methods can be applied to a wide class of nonmetric similarity functions. The key issue, however, is to find methods for choosing good representatives of a class that accurately characterize it. We show that existing condensing techniques are ill-suited to deal with nonmetric dataspaces. We develop techniques for solving this problem, emphasizing two points: First, we show that the distance between images is not a good measure of how well one image can represent another in nonmetric spaces. Instead, we use the vector correlation between the distances from each image to other previously seen images. Second, we show that in nonmetric spaces, boundary points are less significant for capturing the structure of a class than in Euclidean spaces. We suggest that atypical points may be more important in describing classes. We demonstrate the importance of these ideas to learning that generalizes from experience by improving performance. We also suggest ways of applying parametric techniques to supervised learning problems that involve a specific nonmetric distance functions, showing how to generalize the idea of linear discriminant functions in a way that may be more useful in nonmetric spaces

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:22 ,  Issue: 6 )