By Topic

Impact of solder pad size on solder joint reliability in flip chip PBGA packages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mercado, L.L. ; Digital DNA Labs., Motorola Inc., Tempe, AZ, USA ; Sarihan, V. ; Guo, Y. ; Mawer, A.

A variety of parameters impact package reliability. One set of parameters that does not get much attention is the variations in package design that are assembly and vendor related. This study shows that solder pad size is important in solder joint reliability. Differences in solder pad size due to different vendors and processes can affect the reliability considerably. The impact of substrate thickness on package reliability has been shown in finite element stress analysis, moire interferometry experiments, and reliability tests. However, in certain cases, the pad size effect can be so significant that it overrides the impact of substrate thickness. This work indicates that in order to obtain good correlation between predictive engineering results and reliability tests data, this factor should not be ignored. In this study, finite element simulation has been used to quantify the pad size effect on the BGA reliability in the PBGA package. Air-to-air thermal cycling test results were compared with FEM predictions. Optimized pad sizes are discussed and the impact on the solder joint reliability is predicted. Solder pad size effect was found to be a dominant feature in correlating test data with predictions

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:23 ,  Issue: 3 )