By Topic

A family of variable-precision interval arithmetic processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Schulte, M.J. ; Dept. of Comput. Sci. & Electr. Eng., Lehigh Univ., Bethlehem, PA, USA ; Swartzlander, E.E.

Traditional computer systems often suffer from roundoff error and catastrophic cancellation in floating point computations. These systems produce apparently high precision results with little or no indication of the accuracy. This paper presents hardware designs, arithmetic algorithms, and software support for a family of variable-precision, interval arithmetic processors. These processors give the programmer the ability to detect and, if desired, to correct implicit errors in finite precision numerical computations. They also provide the ability to solve problems that cannot be solved efficiently using traditional floating point computations. Execution time estimates indicate that these processors are two to three orders of magnitude faster than software packages that provide similar functionality

Published in:

Computers, IEEE Transactions on  (Volume:49 ,  Issue: 5 )