By Topic

A low-noise fast-lock phase-locked loop with adaptive bandwidth control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Joonsuk Lee ; Boston Design Center, IBM Electron., Lowell, MA, USA ; Beomsup Kim

This paper presents a salient analog phase-locked loop (PLL) that adaptively controls the loop bandwidth according to the locking status and the phase error amount. When the phase error is large, such as in the locking mode, the PLL increases the loop bandwidth and achieves fast locking. On the other hand, when the phase error is small, this PLL decreases the loop bandwidth and minimizes output jitters. Based on an analog recursive bandwidth control algorithm, the PLL achieves the phase and frequency lock in less than 30 clock cycles without pre-training, and maintains the cycle-to-cycle jitter within 20 ps (peak-to-peak) in the tracking mode. A feed forward-type duty-cycle corrector is designed to keep the 50% duty cycle ratio over all operating frequency range.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:35 ,  Issue: 8 )