By Topic

A digital recursive measurement scheme for online tracking of power system harmonics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. A. Girgis ; Dept. of Electr. & Comput. Eng., Clemson Univ., SC, USA ; W. B. Chang ; E. B. Makram

An optimal measurement scheme for tracking the harmonics in power system voltage and current waveforms is presented. The scheme does not require an integer number of samples in an integer number of cycles. It is not limited to stationary signals, but it can track harmonics with time-varying amplitudes. A review is first presented of the common frequency domain techniques for harmonics measurement. The frequency domain techniques are based on the discrete Fourier transform and the fast Fourier transform. Examples of pitfalls in the common techniques are given. The authors then introduce the concepts of the new scheme. This scheme is based on Kalman filtering theory for the optimal estimation of the parameters of time-varying harmonics. The scheme was tested on simulated and actual recorded data sets. It is concluded that the Kalman filtering algorithm is more accurate than the other techniques

Published in:

IEEE Transactions on Power Delivery  (Volume:6 ,  Issue: 3 )