By Topic

Joint equalization and interference suppression for high data rate wireless systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ariyavisitakul, S.L. ; Home Wireless Networks, Norcross, GA, USA ; Winters, J.H. ; Sollenberger, N.R.

Enhanced Data Rates for Global Evolution (EDGE) is currently being standardized as an evolution of GSM in Europe and of IS-136 in the United States as an air interface for high speed data services for third generation mobile systems. In this paper, we study space-time processing for EDGE to provide interference suppression. We consider the use of two receive antennas and propose a joint equalization and diversity receiver. This receiver uses feedforward filters on each diversity branch to perform minimum mean-square error cochannel interference suppression, while leaving the intersymbol interference to be mitigated by the subsequent equalizer. The equalizer is a delayed decision feedback sequence estimator, consisting of a reduced-state Viterbi processor and a feedback filter. The equalizer provides soft output to the channel decoder after deinterleaving. We describe a novel weight generation algorithm and present simulation results on the link performance of EDGE with interference suppression. These results show a significant improvement in the signal-to-interference ratio (SIR) performance due to both diversity (against fading) and interference suppression. At a 10% block error rate, the proposed receiver provides a 20 dB improvement in SIR for both the typical urban and hilly terrain profiles.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:18 ,  Issue: 7 )