By Topic

Combining neural networks, fuzzy sets, and evidence theory based approaches for analysing colour images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Verikas ; Centre for Imaging Sci. & Technol., Halmstad Univ., Halmstad, Sweden ; K. Malmqvist ; M. Bacauskiene

Presents an approach to determining colours of specks in an image taken from a pulp sample. The task is solved through colour classification by an artificial neural network. The network is trained using possibilistic target values. The problem of post-processing of a pixelwise-classified image is addressed from the point of view of the Dempster-Shafer theory of evidence. Each neighbour of a pixel being analysed is considered as an item of evidence supporting particular hypotheses regarding the class label of that pixel. The experiments performed have shown that the colour classification results correspond well with the human perception of colours of the specks

Published in:

Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on  (Volume:2 )

Date of Conference: