Cart (Loading....) | Create Account
Close category search window

Visualization and self-organization of multidimensional data through equalized orthogonal mapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhuo Meng ; Comput. Associates Int. Inc., Independence, OH, USA ; Pao, Y.-H.

An approach to dimension-reduction mapping of multidimensional pattern data is presented. The motivation for this work is to provide a computationally efficient method for visualizing large bodies of complex multidimensional data as a relatively “topologically correct” lower dimensional approximation. Examples of the use of this approach in obtaining meaningful two-dimensional (2-D) maps and comparisons with those obtained by the self-organizing map (SOM) and the neural-net implementation of Sammon's approach are also presented and discussed. In this method, the mapping equalizes and orthogonalizes the lower dimensional outputs by reducing the covariance matrix of the outputs to the form of a constant times the identity matrix. This new method is computationally efficient and “topologically correct” in interesting and useful ways

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 4 )

Date of Publication:

Jul 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.