Cart (Loading....) | Create Account
Close category search window
 

Temporal updating scheme for probabilistic neural network with application to satellite cloud classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bin Tian ; Dept. of Electr. Eng., Colorado State Univ., Fort Collins, CO, USA ; Azimi-Sadjadi, M.R. ; Vonder Haar, T.H. ; Reinke, D.

In cloud classification from satellite imagery, temporal change in the images is one of the main factors that causes degradation in the classifier performance. In this paper, a novel temporal updating approach is developed for probabilistic neural network (PNN) classifiers that can be used to track temporal changes in a sequence of images. This is done by utilizing the temporal contextual information and adjusting the PNN to adapt to such changes. Whenever a new set of images arrives, an initial classification is first performed using the PNN updated up to the last frame while at the same time, a prediction using Markov chain models is also made based on the classification results of the previous frame. The results of both the old PNN and the predictor are then compared. Depending on the outcome, either a supervised or an unsupervised updating scheme is used to update the PNN classifier. Maximum likelihood (ML) criterion is adopted in both the training and updating schemes. The proposed scheme is examined on both a simulated data set and the Geostationary Operational Environmental Satellite (GOES) 8 satellite cloud imagery data. These results indicate the improvements in the classification accuracy when the proposed scheme is used

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 4 )

Date of Publication:

Jul 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.