By Topic

A modified Hopfield auto-associative memory with improved capacity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
V. Gimenez-Martinez ; Fac. de Inf., Univ. Politecnica de Madrid, Spain

This paper describes a new procedure to implement a recurrent neural network (RNN), based on a new approach to the well-known Hopfield autoassociative memory. In our approach a RNN is seen as a complete graph G and the learning mechanism is also based on Hebb's law, but with a very significant difference: the weights, which control the dynamics of the net, are obtained by coloring the graph G. Once the training is complete, the synaptic matrix of the net will be the weight matrix of the graph. Any one of these matrices will fulfil some spatial properties, for this reason they will be referred to as tetrahedral matrices. The geometrical properties of these tetrahedral matrices may be used for classifying the n-dimensional state-vector space in n classes. In the recall stage, a parameter vector is introduced, which is related with the capacity of the network. It may be shown that the bigger the value of the ith component of the parameter vector is, the lower the capacity of the [i] class of the state-vector space becomes. Once the capacity has been controlled, a new set of parameters that uses the statistical deviation of the prototypes to compare them with those that appear as fixed points is introduced, eliminating thus a great number of parasitic fixed points

Published in:

IEEE Transactions on Neural Networks  (Volume:11 ,  Issue: 4 )