By Topic

Complex propagators for evanescent waves in bidirectional beam propagation method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hongling Rao ; Microelectron. Sci. Lab., Columbia Univ., New York, NY, USA ; Steel, M.J. ; Scarmozzino, Rob ; Osgood, R.M.

Existing algorithms for bidirectional optical beam propagation proposed to simulate reflective integrated photonic devices do not propagate evanescent fields correctly. Thus inaccuracy and instability problems can arise when fields have significant evanescent character. We propose complex representations of the propagation operator by choosing either a complex reference wave number or a complex representation of Pade approximation to address this issue. Therefore correct evolution of both propagating waves and evanescent waves can be simultaneously realized, significantly reducing the inaccuracy and instability problems. Both test problems and practical problems are presented for demonstration.

Published in:

Lightwave Technology, Journal of  (Volume:18 ,  Issue: 8 )