Cart (Loading....) | Create Account
Close category search window
 

On the algorithmic implementation of stochastic discrimination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kleinberg, E.M. ; Dept. of Math., State Univ. of New York, Buffalo, NY, USA

Stochastic discrimination is a general methodology for constructing classifiers appropriate for pattern recognition. It is based on combining arbitrary numbers of very weak components, which are usually generated by some pseudorandom process, and it has the property that the very complex and accurate classifiers produced in this way retain the ability, characteristic of their weak component pieces, to generalize to new data. In fact, it is often observed, in practice, that classifier performance on test sets continues to rise as more weak components are added, even after performance on training sets seems to have reached a maximum. This is predicted by the underlying theory, for even though the formal error rate on the training set may have reached a minimum, more sophisticated measures intrinsic to this method indicate that classifier performance on both training and test sets continues to improve as complexity increases. We begin with a review of the method of stochastic discrimination as applied to pattern recognition. Through a progression of examples keyed to various theoretical issues, we discuss considerations involved with its algorithmic implementation. We then take such an algorithmic implementation and compare its performance, on a large set of standardized pattern recognition problems from the University of California Irvine, and Statlog collections, to many other techniques reported on in the literature, including boosting and bagging. In doing these studies, we compare our results to those reported in the literature by the various authors for the other methods, using the same data and study paradigms used by them. Included in the paper is an outline of the underlying mathematical theory of stochastic discrimination and a remark concerning boosting, which provides a theoretical justification for properties of that method observed in practice, including its ability to generalize

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:22 ,  Issue: 5 )

Date of Publication:

May 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.