By Topic

MIR: an approach to robust clustering-application to range image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. Koster ; Div. NMS, Nokia Telecommun., Dusseldoft, Germany ; M. Spann

This paper describes an unsupervised region merging technique based on a novel robust statistical test. The merging decision is derived from the mutual inlier ratio (MIR) of adjacent regions. This ratio is computed using robust regression techniques and a novel method to estimate the robust scale of the Gaussian distribution. A discrimination value to recognize identical Gaussian distributions with the MIR is derived theoretically as a function of the sizes of the compared sets. The presented method to test distributions is compared with the established Kolmogorov-Smirnov test and implemented into a segmentation algorithm for planar range images. The iterative region growing technique is evaluated using an established framework for range image segmentation comparison involving 60 real range images. The evaluation incorporates a comparison with four state-of-the-art algorithms and gives an experimental demonstration of the need for robust methods capable of handling noisy data in real applications

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:22 ,  Issue: 5 )