Cart (Loading....) | Create Account
Close category search window

Tissue classification based on 3D local intensity structures for volume rendering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Sato, Y. ; Biomed Res. Centre, Osaka Univ., Japan ; Westin, C.-F. ; Bhalerao, A. ; Nakajima, S.
more authors

This paper describes a novel approach to tissue classification using three-dimensional (3D) derivative features in the volume rendering pipeline. In conventional tissue classification for a scalar volume, tissues of interest are characterized by an opacity transfer function defined as a one-dimensional (1D) function of the original volume intensity. To overcome the limitations inherent in conventional 1D opacity functions, we propose a tissue classification method that employs a multidimensional opacity function, which is a function of the 3D derivative features calculated from a scalar volume as well as the volume intensity. Tissues of interest are characterized by explicitly defined classification rules based on 3D filter responses highlighting local structures, such as edge, sheet, line, and blob, which typically correspond to tissue boundaries, cortices, vessels, and nodules, respectively, in medical volume data. The 3D local structure filters are formulated using the gradient vector and Hessian matrix of the volume intensity function combined with isotropic Gaussian blurring. These filter responses and the original intensity define a multidimensional feature space in which multichannel tissue classification strategies are designed. The usefulness of the proposed method is demonstrated by comparisons with conventional single-channel classification using both synthesized data and clinical data acquired with CT (computed tomography) and MRI (magnetic resonance imaging) scanners. The improvement in image quality obtained using multichannel classification is confirmed by evaluating the contrast and contrast-to-noise ratio in the resultant volume-rendered images with variable opacity values

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:6 ,  Issue: 2 )

Date of Publication:

Apr-Jun 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.