By Topic

Recovery of nonrigid motion and structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pentland, A. ; Media Lab., MIT, Cambridge, MA, USA ; Horowitz, B.

The authors introduce a physically correct model of elastic nonrigid motion. This model is based on the finite element method, but decouples the degrees of freedom by breaking down object motion into rigid and nonrigid vibration or deformation modes. The result is an accurate representation for both rigid and nonrigid motion that has greatly reduced dimensionality, capturing the intuition that nonrigid motion is normally coherent and not chaotic. Because of the small number of parameters involved, this representation is used to obtain accurate overstrained estimates of both rigid and nonrigid global motion. It is also shown that these estimates can be integrated over time by use of an extended Kalman filter, resulting in stable and accurate estimates of both three-dimensional shape and three-dimensional velocity. The formulation is then extended to include constrained nonrigid motion. Examples of tracking single nonrigid objects and multiple constrained objects are presented

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:13 ,  Issue: 7 )