By Topic

Closed-form solutions for physically based shape modeling and recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pentland, A. ; Media Lab., MIT, Cambridge, MA, USA ; Sclaroff, S.

The authors present a closed-form, physically based solution for recovering a three-dimensional (3-D) solid model from collections of 3-D surface measurements. Given a sufficient number of independent measurements, the solution is overconstrained and unique except for rotational symmetries. The proposed approach is based on the finite element method (FEM) and parametric solid modeling using implicit functions. This approach provides both the convenience of parametric modeling and the expressiveness of the physically based mesh formulation and, in addition, can provide great accuracy at physical simulation. A physically based object-recognition method that allows simple, closed-form comparisons of recovered 3-D solid models is presented. The performance of these methods is evaluated using both synthetic range data with various signal-to-noise ratios and using laser rangefinder data

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:13 ,  Issue: 7 )