Cart (Loading....) | Create Account
Close category search window
 

A fast algorithm for DCT-domain inverse motion compensation based on shared information in a macroblock

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Junehwa Song ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Boon-Lock Yeo

The ability to construct intracoded frame from motion-compensated intercoded frames directly in the compressed domain is important for efficient video manipulation and composition. In the context of motion-compensated discrete cosine transform (DCT)-based coding of video as in MPEG video, this problem of DCT-domain inverse motion compensation has been studied and, subsequently, improved faster algorithms were proposed. These schemes, however, treat each 8×8 block as a fundamental unit, and do not take into account the fact that in MPEG, a macroblock consists of several such blocks. We show how shared information within a macroblock, such as a motion vector and common blocks, can be exploited to yield substantial speedup in computation. Compared to previous brute-force approaches, our algorithms yield about 44% improvement. Our technique is independent of the underlying computational or processor model, and thus can be implemented on top of any optimized solution. We demonstrate an improvement by about 19%, and 13.5% in the worst case, on top of the optimized solutions presented in existing literature

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:10 ,  Issue: 5 )

Date of Publication:

Aug 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.