By Topic

Shape coding using temporal correlation and joint VLC optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Melnikov, G. ; McCormick Sch. of Eng. & Appl. Sci., Northwestern Univ., Evanston, IL, USA ; Schuster, G.M. ; Katsaggelos, A.K.

This paper investigates ways to explore the between frame correlation of shape information within the framework of an operationally rate-distortion (ORD) optimized coder. Contours are approximated both by connected second-order spline segments, each defined by three consecutive control points, and by segments of the motion-compensated reference contours. Consecutive control points are then encoded predictively using angle and run temporal contexts or by tracking the reference contour. We utilize a novel criterion for selecting global object motion vectors, which improves the efficiency. The problem is formulated as a Lagrangian minimization and solved using dynamic programming. Furthermore, we employ an iterative technique to remove dependency on a particular variable length code and jointly arrive at the ORD globally optimal solution and an optimized conditional parameter distribution

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:10 ,  Issue: 5 )