By Topic

Fast solving method of fuzzy relational equation and its application to lossy image compression/reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
H. Nobuhara ; Dept. of Comput. Intelligence & Syst. Sci., Tokyo Inst. of Technol., Japan ; W. Pedrycz ; K. Hirota

A fast solving method of the solution for max continuous t-norm composite fuzzy relational equation of the type G(i, j)=(RT□Ai)T□Bj , i=1, 2, ..., I, j=1, 2, ..., J, where Ai∈F(X)X={x1, x2, ..., xM }, Bj∈F(Y) Y={y1, y2, ..., yN}, R∈F(X×Y), and □: max continuous t-norm composition, is proposed. It decreases the computation time IJMN(L+T+P) to JM(I+N)(L+P), where L, T, and P denote the computation time of min, t-norm, and relative pseudocomplement operations, respectively, by simplifying the conventional reconstruction equation based on the properties of t-norm and relative pseudocomplement. The method is applied to a lossy image compression and reconstruction problem, where it is confirmed that the computation time of the reconstructed image is decreased to 1/335.6 the compression rate being 0.0351, and it achieves almost equivalent performance for the conventional lossy image compression methods based on discrete cosine transform and vector quantization

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:8 ,  Issue: 3 )