Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Mixed H2/H fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Chen, Bor-Sen ; Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Chung-Shi Tseng ; Huey-Jian Uang

This study introduces a mixed H2/H fuzzy output feedback control design method for nonlinear systems with guaranteed control performance. First, the Takagi-Sugeno fuzzy model is employed to approximate a nonlinear system. Next, based on the fuzzy model, a fuzzy observer-based mixed H2/H controller is developed to achieve the suboptimal H2 control performance with a desired H disturbance rejection constraint. A robust stabilization technique is also proposed to override the effect of approximation error in the fuzzy approximation procedure. By the proposed decoupling technique and two-stage procedure, the outcome of the fuzzy observer-based mixed H2/H control problem is parametrized in terms of the two eigenvalue problems (EVPs): one for observer and the other for controller. The EVPs can be solved very efficiently using the linear matrix inequality (LMI) optimization techniques. A simulation example is given to illustrate the design procedures and performances of the proposed method

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:8 ,  Issue: 3 )