Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Phase balancing for a self-excited induction generator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chan, T.F. ; Dept. of Electr. Eng., Hong Kong Polytech., Kowloon, China ; Lai, L.L.

This paper describes a phase-balancing scheme for a three-phase self-excited induction generator (SEIG) which supplies single-phase loads. It is demonstrated that perfect phase balance can be achieved using a modified Steinmetz connection, provided that the positive-sequence impedance angle of the SEIG exceeds 2π/3 rad. From the phasor diagram, the conditions for perfect balance are established. It is found that the values of phase converter elements as well as the load resistance are functions of the positive-sequence admittance and impedance angle of the induction generator. Using the method of symmetrical components, the input impedance of the SEIG can be determined and solution of the equivalent circuit is formulated as a function minimization problem. The pattern search method of Hooke and Jeeves is employed for minimizing the impedance function, which enables the machine variables to be determined. It is further shown that, when the auxiliary load resistance is absent, perfect phase balance can still be achieved when the impedance angle of the SEIG is equal to 2π/3 rad. Feasibility of the phase-balancing schemes and the validity of the theoretical analysis are confirmed by experiments on a 2.2 kW induction machine

Published in:

Electric Utility Deregulation and Restructuring and Power Technologies, 2000. Proceedings. DRPT 2000. International Conference on

Date of Conference: