By Topic

Robust and minimum norm pole assignment with periodic state feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Varga, A. ; Inst. of Robotics & Syst. Dynamics, German Aerosp. Res. Establ., Wessling, Germany

A computational approach is proposed to solve the minimum norm or robust pole assignment problem for linear periodic discrete-time systems. The proposed approach uses a periodic Sylvester-equation-based parametrization of the periodic pole assignment problem and exploits the nonuniqueness of the problem by imposing conditions on the norm of the resulting periodic state feedback or on the condition numbers of the periodic eigenvector matrices of the closed-loop system. The solution method relies on using gradient search methods on suitably defined cost functions. Explicit expressions of the gradients of cost functions are derived, and the efficient evaluation of the cost functions and gradients is discussed. Numerical examples illustrate the effectiveness of the proposed approach

Published in:

Automatic Control, IEEE Transactions on  (Volume:45 ,  Issue: 5 )