By Topic

Failure correlation in software reliability models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Goseva-Popstojanova, K. ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Trivedi, K.S.

Perhaps the most stringent restriction in most software reliability models is the assumption of statistical independence among successive software failures. The authors research was motivated by the fact that although there are practical situations in which this assumption could be easily violated, much of the published literature on software reliability modeling does not seriously address this issue. The research work in this paper is devoted to developing the software reliability modeling framework that can consider the phenomena of failure correlation and to study its effects on the software reliability measures. The important property of the developed Markov renewal modeling approach is its flexibility. It allows construction of the software reliability model in both discrete time and continuous time, and (depending on the goals) to base the analysis either on Markov chain theory or on renewal process theory. Thus, their modeling approach is an important step toward more consistent and realistic modeling of software reliability. It can be related to existing software reliability growth models. Many input-domain and time-domain models can be derived as special cases under the assumption of failure s-independence. This paper aims at showing that the classical software reliability theory can be extended to consider a sequence of possibly s-dependent software runs, viz, failure correlation. It does not deal with inference nor with predictions, per se. For the model to be fully specified and applied to estimations and predictions in real software development projects, we need to address many research issues, e.g., the detailed assumptions about the nature of the overall reliability growth, way modeling-parameters change as a result of the fault-removal attempts

Published in:

Reliability, IEEE Transactions on  (Volume:49 ,  Issue: 1 )