By Topic

Estimation of 2-D noisy fractional Brownian motion and its applications using wavelets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jen-Chang Liu ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Wen-Liang Hwang ; Ming-Syan Chen

The two-dimensional (2-D) fractional Brownian motion (fBm) model is useful in describing natural scenes and textures. Most fractal estimation algorithms for 2-D isotropic fBm images are simple extensions of the one-dimensional (1-D) fBm estimation method. This method does not perform well when the image size is small (say, 32×32). We propose a new algorithm that estimates the fractal parameter from the decay of the variance of the wavelet coefficients across scales. Our method places no restriction on the wavelets. Also, it provides a robust parameter estimation for small noisy fractal images. For image denoising, a Wiener filter is constructed by our algorithm using the estimated parameters and is then applied to the noisy wavelet coefficients at each scale. We show that the averaged power spectrum of the denoised image is isotropic and is a nearly 1/f process. The performance of our algorithm is shown by numerical simulation for both the fractal parameter and the image estimation. Applications to coastline detection and texture segmentation in a noisy environment are also demonstrated

Published in:

Image Processing, IEEE Transactions on  (Volume:9 ,  Issue: 8 )