Cart (Loading....) | Create Account
Close category search window
 

Adaptive Bayesian recognition in tracking rigid objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Boykov, Y. ; Dept. of Comput. Sci., Cornell Univ., Ithaca, NY, USA ; Huttenlocher, D.P.

We present a framework for tracking rigid objects based on an adaptive Bayesian recognition technique that incorporates dependencies between object features. At each frame we find a maximum a posteriori (MAP) estimate of the object parameters that include positioning and configuration of non-occluded features. This estimate may be rejected based on its quality. Our careful selection of data points in each frame allows temporal fusion via Kalman filtering. Despite “unimodality” of our tracking scheme, we demonstrate fairly robust results in highly cluttered aerial scenes. Our technique forms a natural feedback loop between the recognition method and the filter that helps to explain such robustness. We study this loop and derive a number of interesting properties. First, the effective threshold for recognition in each frame is adaptive. It depends on the current level of noise in the system. This allows the system to identify partially occluded or distorted objects as long as the predicted locations are accurate. But requires a very good match if there is uncertainty as to the object location. Second, the search area for the recognition method is automatically pruned based on the current system uncertainty, yielding an efficient overall method

Published in:

Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on  (Volume:2 )

Date of Conference:

2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.