Cart (Loading....) | Create Account
Close category search window
 

Hybrid-mode analysis of homogeneously and inhomogeneously doped low-loss slow-wave coplanar transmission lines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ke Wu ; Dept. of Electr. & Comput. Eng., Victoria Univ., BC, Canada ; Vahldieck, R.

A hybrid-mode analysis is presented to characterize the propagation properties of uniplanar slow-wave MIS (metal-insulator-semiconductor) coplanar transmission lines. The effect of homogeneous versus gradually inhomogeneous doping profile is investigated as well as the influence of the metal conductor losses and finite metallization thickness on the slow-wave factor and the overall losses. Numerical results indicate that thick-film MIS CPWs can support a slow-wave mode with moderate loss up to 40 GHz when the line dimensions are kept in the micrometer range. Furthermore, it is found that an inhomogeneous doping profile can reduce the overall losses and that the effect of metal conductor losses in heavily doped MIS structures is only marginal. On the other hand, in weakly doped or insulating GaAs material a lossy metal conductor leads to a higher propagation constant, exhibiting a negative slope with increasing frequency

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:39 ,  Issue: 8 )

Date of Publication:

Aug 1991

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.