By Topic

Impedance and attenuation profile estimation of multilayered material from reflected ultrasound

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chen, T. ; Dept. of Electr. Eng., Michigan State Univ., East Lansing, MI, USA ; Bong Ho ; Zapp, H.R.

Time-domain and spectral shift methods for determining the attenuation and impedance profiles of multilayered structures are presented. The time-domain technique utilizes two-sided interrogation to measure attenuation and acoustic impedance for individual layers separately under the assumption of a narrowband incident wave. This method is based solely on peak amplitude ratios of successive time-domain echo returns from both sides of the target. The spectral shift technique requires that the propagating pulse have a Gaussian-shaped spectrum, and the transfer function of each layer be characterized by either linear or quadratic frequency dependent attenuation. This method derives the attenuation coefficients and acoustic impedances for individual layers from the information of spectral shift and spectral amplitude peak ratios of the successive gated pulses from single sided interrogation. Experimental results are compared with published data to confirm the validity of these approaches

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:40 ,  Issue: 4 )