By Topic

Impurity local phonon nonradiative quenching of Yb/sup 3+/ fluorescence in ytterbium-doped silicate glasses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

We have studied the concentration quenching of Yb/sup 3+/ ion fluorescence in Yb-doped silicate glasses containing up to 3.4/spl times/10/sup 21/ cm/sup -3/ Yb/sup 3+/ ions. The absorption and fluorescence spectra are similar to those obtained for the Yb/sup 3+/ ion in many different matrices, with a radiative lifetime of approximately 1400 /spl mu/s. The fluorescence decay curves were different among samples, with strong dependence on the Yb concentration. The decay curves could always be resolved into two exponential components, indicating that the ions reside in two different sites, each of a different characteristic nonradiative decay mechanism. The fast decay times ranged between 6 and 300 /spl mu/s, and the slow ones ranged between 190 and 1250 /spl mu/s in different samples. The sites where ions exhibit the fast decay most probably consist of pairs of Yb/sup 3+/ ions. The nonradiative decay probabilities for each site mere directly proportional to the Yb/sup 3+/ concentration in the same site. We propose that the fluorescence quenching occurs by multiphonon nonradiative transitions involving polar local phonon bands created by the presence of the Yb/sup 3+/ ion.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:36 ,  Issue: 8 )