Cart (Loading....) | Create Account
Close category search window

Digital signal processing techniques for high accuracy ultrasonic range measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Parrilla, M. ; Inst. de Autom. Ind., Madrid, Spain ; Anaya, J.J. ; Fritsch, C.

Several digital signal processing (DSP) methods are analyzed and compared with respect to the expected errors for an ultrasonic range measurement arrangement. These include L1, L2 norms and correlation with different approaches for envelope extraction. The influence of different factors such as signal-to-noise ratio (SNR), sampling frequency, and digitizing resolution on measurement errors is analyzed using a synthetic approach through nearly 40000 simulations. Results show different performance levels involving accuracy, computing time, and cost for the studied methods, although all of them allow reduction of errors by several orders of magnitude

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:40 ,  Issue: 4 )

Date of Publication:

Aug 1991

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.