By Topic

Consistent knowledge discovery in medical diagnosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kovalerchuk, B. ; Dept. of Comput. Sci., Central Washington Univ., Ellensburg, WA, USA ; Vityaev, E. ; Ruiz, J.F.

Discusses eliminating contradictions among rules in computer-aided systems, experts rules, and databases. The study has demonstrated how consistent data mining in medical diagnosis can create a set of logical diagnostic rules for computer-aided diagnostic systems. Consistency avoids contradiction among rules generated using data mining software, rules used by an experienced radiologist, and a database of pathologically confirmed cases. The authors identified major problems: to find contradiction between diagnostic rules and to eliminate contradiction. They applied two complimentary intelligent technologies for extraction of rules and recognition of their contradictions. The first technique is based on discovering statistically significant logical diagnostic rules. The second technique is based on the restoration of a monotone Boolean function to generate a minimal dynamic sequence of questions to a medical expert. The results of this mutual verification of expert and data-driven rules demonstrate feasibility of the approach for designing consistent computer-aided diagnostic systems

Published in:

Engineering in Medicine and Biology Magazine, IEEE  (Volume:19 ,  Issue: 4 )