By Topic

Robust damping controller design in power systems with superconducting magnetic energy storage devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pal, B.C. ; Dept. of Electron. & Electr. Eng., Imperial Coll. of Sci., Technol. & Med., London, UK ; Coonick, A.H. ; Macdonald, Donald C.

The decentralized design of low-order robust damping controllers is presented based on a weighted and normalized eigenvalue-distance minimization method (WNEDM) employing several superconducting magnetic energy storage (SMES) devices. These controllers are aimed at enhancing the damping of multiple inter-area modes in a large power system. This paper describes a comprehensive and systematic way of designing these controllers. Nonlinear simulations further verify the robustness of the damping controllers for various operating conditions

Published in:

Power Systems, IEEE Transactions on  (Volume:15 ,  Issue: 1 )