By Topic

Compact piezoelectric stacked actuators for high power applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kui Yao ; Inst. of Mater. Res. & Eng., Singapore ; Uchino, Kenji ; Yuan Xu ; Shuxiang Dong
more authors

Small, hollow, multilayer actuators with a diameter of 3 mm were fabricated by the stacking method from piezoelectric hard lead zirconate titanate (PZT) ceramics. Langevin vibrators were also constructed with the hollow multilayer actuators. The performance capabilities of the actuator and Langevin vibrator samples were examined under high-power conditions. The high-power vibration level at a given sinusoidal drive voltage was significantly enhanced by using a multilayer structure under either a nonresonance or resonance condition. A maximum vibration velocity of 0.17 m/sec was obtained for the 9-layer actuator sample under nonresonance conditions. The vibration velocity was further improved with the Langevin vibrator driven at the resonance frequency. The temperature rise due to heat generation under high-power conditions was the immediate limitation on the maximum accessible vibration velocity for the stacked actuators.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:47 ,  Issue: 4 )