By Topic

Blind channel and carrier frequency offset estimation using periodic modulation precoders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Serpedin, E. ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; Chevreuil, A. ; Giannakis, G.B. ; Loubaton, P.

Previous results have shown that blind channel estimators, which are resilient to the location of channel zeros, color of additive stationary noise, and channel order overestimation errors, can be developed for communication systems equipped with transmitter-induced cyclostationarity precoders. The present paper extends these blind estimation approaches to the more general problem of estimating the unknown intersymbol interference (ISI) and carrier frequency offset/Doppler effects using such precoders. An all-digital open-loop carrier frequency offset estimator is developed, and its asymptotic (large sample) performance is analyzed and compared to the Cramer-Rao bound (CRB). A subspace-based channel identification approach is proposed for estimating, in closed-form, the unknown channel, regardless of the channel spectral nulls. It is shown that compensating for the carrier frequency offset introduces no penalty in the asymptotic performance of the subspace channel estimator. Simulations are presented to corroborate the performance of the proposed algorithms

Published in:

Signal Processing, IEEE Transactions on  (Volume:48 ,  Issue: 8 )