By Topic

Parallel factor analysis in sensor array processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
N. D. Sidiropoulos ; Dept. of Electr. Eng., Virginia Univ., Charlottesville, VA, USA ; R. Bro ; G. B. Giannakis

This paper links multiple invariance sensor array processing (MI-SAP) to parallel factor (PARAFAC) analysis, which is a tool rooted in psychometrics and chemometrics. PARAFAC is a common name for low-rank decomposition of three- and higher way arrays. This link facilitates the derivation of powerful identifiability results for MI-SAP, shows that the uniqueness of single- and multiple-invariance ESPRIT stems from uniqueness of low-rank decomposition of three-way arrays, and allows tapping on the available expertise for fitting the PARAFAC model. The results are applicable to both data-domain and subspace MI-SAP formulations. The paper also includes a constructive uniqueness proof for a special PARAFAC model

Published in:

IEEE Transactions on Signal Processing  (Volume:48 ,  Issue: 8 )