By Topic

Steady-state MSE convergence of LMS adaptive filters with deterministic reference inputs with applications to biomedical signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Olmos, S. ; Dept. of Electron. Eng. & Commun., Zaragoza Univ., Spain ; Laguna, P.

We analyze the steady-state mean square error (MSE) convergence of the LMS algorithm when deterministic functions are used as reference inputs. A particular adaptive linear combiner is presented where the reference inputs are any set of orthogonal basis functions-the adaptive orthogonal linear combiner (AOLC). Several authors have applied this structure always considering in the analysis a time-average behavior over one signal occurrence. We make a more precise analysis using the deterministic nature of the reference inputs and their time-variant correlation matrix. Two different situations are considered in the analysis: orthogonal complete expansions and incomplete expansions. The steady-state misadjustment is calculated using two different procedures with equivalent results: the classical one (analyzing the transient behavior of the MSE) and as the residual noise at the output of the equivalent time-variant transfer function of the system. The latter procedure allows a very simple formalism being valid for colored noise as well. The derived expressions for steady-state misadjustment are contrasted with experimental results in electrocardiographic (ECG) signals, giving exact concordance for any value of the step size

Published in:

Signal Processing, IEEE Transactions on  (Volume:48 ,  Issue: 8 )