By Topic

Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform Cartesian array grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zoltowski, M.D. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Wong, K.T.

A sparse uniform Cartesian-grid array suffers cyclic ambiguity in its Cartesian direction-cosine estimates due to the spatial Nyquist sampling theorem. The proposed MUSIC-based or MODE-based algorithm improves and generalizes previous disambiguation schemes that populate the thin array grid with identical subarrays-such as electromagnetic vector sensors, underwater acoustic vector hydrophones, or half-wavelength spaced subarrays

Published in:

Signal Processing, IEEE Transactions on  (Volume:48 ,  Issue: 8 )