Cart (Loading....) | Create Account
Close category search window

Azimuth variation in microwave scatterometer and radiometer data over Antarctica

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Long, D.G. ; Dept. of Electr. & Comput. Eng., Brigham Young Univ., Provo, UT, USA ; Drinkwater, M.R.

While designed for ocean observation, scatterometer and radiometer data have proven very useful in a variety of cryosphere studies. Over large regions of Antarctica, ice sheet and bedrock topography and the snow deposition, drift, and erosional environment combine to produce roughness on various scales. Roughness ranges from broad, basin-scale ice-sheet topography at ~100 km wavelengths to large, spatially coherent dune fields at ~10 km wavelength to erosional features on the meter scale known as sastrugi. These roughness scales influence the microwave backscattering and emission properties of the surface, combining to introduce azimuth-angle dependencies in the satellite observation data. In this paper, the authors explore the use of NASA scatterometer (NSCAT) data, European remote sensing (ERS) advanced microwave instrument (AMI) scatterometer mode data, and special sensor microwave/imager (SSM/I) data to study surface roughness effects in Antarctica. All three sensors provide strong evidence of azimuth modulation, which is correlated with the surface slope environment and results in a katabatic wind flow regime. Due to its broad azimuth coverage, NSCAT data appears to be the best suited for azimuth-angle observations. A simple empirical model for the azimuth variation in the radar backscatter is developed, and an algorithm for computing the parameters of the model from NSCAT data at a fine scale is presented. Results indicate relationships exist between the azimuthal variation of the data and the orientation of the surface slope and small-scale roughness relative to the sensor-look direction

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:38 ,  Issue: 4 )

Date of Publication:

Jul 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.